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Abstract

The alloys NbGa;_, form composition-driven long-
period superstructures derived from the D0,, by the
introduction of non-conservative antiphase boun-
daries along (001) planes. The displacement vectors
of successive antiphase boundaries are alternately
3 [201] and # [021]. In alloys with a composition
which deviates less from NbGa; than NbsGa,; suc-
cessive antiphase boundaries all have the same dis-
placement vector, either } [201] or 5 [021]. The alloy
Nb;Ga,; is the first material which has a long-period
superstructure based on the alternation of two types
of antiphase boundaries.

1. Introduction

In a recent paper (Takeda, Van Tendeloo &
Amelinckx, 1987) we reported briefly on a redeter-
mination of the structure of NbsGa,;. It was found
that this structure is tetragonal and has an unusually
large ¢ parameter of ~80 A. The structure is a long-
period antiphase-boundary modulated superstructure
of the D0,, structure. The superstructure is composi-
tion driven; the excess niobium as compared to the
ideal composition NbGa, of the DO, structure is
accommodated in this structure along non-conserva-
tive antiphase boundaries, belonging alternately to
two different families. In the present paper we report
more detailed results on NbsGa,; as well as on the
structures of alloys in the same binary system but
with a slightly different composition.

*On leave from Toyohashi University of Technology, 1-1
Hibarigaoka, Tenpakucho, Toyohashi 440, Japan.

0108-7673/88/060938-09$03.00

2. Preparation of materials and specimens

The alloys were prepared by alloying the elements in
the appropriate proportions by dissolving niobium in
molten gallium. The molten mixture was then
quenched to room temperature and subsequently
annealed at 1370 K, which is below the peritectic
decomposition temperature of 1508 K, over 14d.
Specimens for electron microscopy and electron
diffraction are prepared by crushing the brittle
material, We prepared and examined alloys with a
nominal composition in the range between Nb,Ga,,
and NbGa,.

3. Crystallographic considerations; structural
building principle

The structure of Nbs;Ga,; was determined by Schubert
(1964). It was found to be a long-period out-of-
phase boundary modulated superstructure derived
from the deformed DO0,, structure of NbGa;, which
is itself a superstructure derived from a face-centred-
based L1, structure. The D0, structure is derived from
the L1, structure by the introduction of periodic
conservative antiphase boundaries. On the other hand
the Nb;Ga,; structure is derived from the DO, struc-
ture by the introduction of non-conservative out-of-
phase boundaries after every two DO0,, unit cells. In
the model of Schubert (Fig. 1b) all the out-of-phase
boundaries have the same displacement vector; we
shall show that the essential features of the model
are correct, but that the out-of-phase boundaries have
alternately two different displacement vectors, which
are related by the tetragonal symmetry of the DO,
basic structure (Figs. 1a,¢). As a result the long period
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if
2h+1=4p, (2)
h(u+v)+iw=1%(mod1) (3)

if
2h+1=4q+2 4)

where p and q are integers.
Substituting (2) and (4) into (1) and (3) leads to
the equations

h(u+v-2w)=4pw (5)

h(u+ov-2w)=(4g£2)w=}; (6)
subtraction leads to

[4(p—g)£2]w= £} (mod1). (7)

The solution corresponding to p=gq is w= £}
(mod 1). This solution also satisfies (7) for all values
of p and q. With w =] the relations (5) and (6) reduce
to

h(u+v—3)=p (mod1) (8)
h(u+v—3)=q (mod 1) (9)
for all h, of which the simplest solution is

utv=14 (10)

The R, and R, must moreover be of the type usually
met in f.c.c.-based alloys, ie. 3 (110), which is
equivalent to R,=3 [0, £2, £1] and R,=3 [£2, 0,
+1] when referred to the DO0,, unit cell; the solutions
of (10) are either u =0, v =1or u =3, v = 0. One finally
notes that with u=0, v=3, w=} and u=3 v=0,
w =1, the following relation holds:

a[021]+5 [201] =3 [111],

which is a lattice vector of the DO0,, structure, con-
sistent with the fact that the sum of the two displace-
ment vectors must be a lattice vector.

5.2. Nb¢Ga,s, Nb,Ga,, and NbyGa,,

The unit-cell size can immediately be determined
from the superstructure spot spacing. The numbers
of f.c.c. unit cells in one domain of the superstructure
unit cells are respectively 11, 13 and 15, as can be
deduced immediately from the number of superlattice
spacings between the origin and 004. The interfaces
are perpendicular to the [001] direction. The struc-
tures will be determined completely if the displace-
ment vector of the out-of-phase boundaries is known.
This vector follows directly from the fractional shifts
by means of the following reasoning.

The observed fractional shifts are summarized in
Table 2. If the displacement vector is represented as
R(uvw) the fractional shifts lead to the following

LONG-PERIOD STRUCTURES IN THE Nb-Ga SYSTEM

Table 2. Observed and calculated fractional shifts in

g g - R (measured) g - R (calculated)
002 ) 3
004 0 1
110 L !
101 ! :
103 £} :
12 0 1

independent relations:
4w=0 (mod 1):

u+w==1(mod1):

w=tg;
u=ti45
v+w=+} (mod 1): v=x5+% e v=%30r0.
The two possible displacement vectors are thus
R,=4[201] and R,=} [021].

They are consistent with all other fractional shifts, as
can be deduced from Table 2.

The models for these structures are hence as rep-
resented in Figs. 7 and 8 respectively for n =11 and
13. Each of these structures occurs as two coaxial
variants with their ¢ axes parallel to the same c¢ axis
of the underlying D0,, structure.

6. High-resolution images
6.1. NbsGa,;

The [100] zone image of this phase is reproduced
in Fig. 9; it is clear that the out-of-phase boundaries

R
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Fig. 7. Schematic representation of the structure of NbsGa,, (n =
11) as viewed along two different zones; only minority atoms
are represented. (a) [100] zone, (b) [010] zone.
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Abstract

To calculate high-resolution images it is necessary to
convolute the wavefunction generated by scattering
from the specimen with the microscope objective-lens
wavefront aberration function. This is usually done
by a multiplication of the transfer function and the
specimen exit-surface wavefunction in reciprocal
space followed by a numerical integration over all
scattering wave vectors. Examination of the analytic
behaviour of the wave-front aberration function in
the complex plane shows that, for simple scattering
functions, it is possible to perform the integral analyti-
cally using the method of stationary phase. Analytic
results for the imaging of disordered planes of atoms
are compared with fast Fourier transform calculations
as a function of defocus. The limitations of stationary-
phase integration are also discussed.

The calculation of high-resolution images in electron
microscopy can be divided into two parts. The ampli-
tude distribution as a function of scattering wave
vector is first calculated using some model for the
potential in the specimen and an appropriate theory
for electron scattering (Spence, 1980). If the scattering
is relatively weak the specimen can be considered as
either a strong or a weak phase object (Cowley, 1975).
Alternatively, a full dynamical diffraction calculation
using either Bloch-wave (Bethe, 1928) or multislice
methods (Cowley & Moodie, 1957) could be per-
formed to give the wave function at the exit surface
of the crystal.

The second part of the calculation considers the
effects of the microscope objective lens and its aberra-
tions in forming the image. This could be done by a
convolution in real space but it is more convenient

0108-7673/88/060946-08303.00

to replace this by a multiplication of the exit-surface
wavefunction and the wave-front aberration func-
tions in reciprocal space followed by an integration
over all relevant scattering wave vectors (Spence,
1980). The wave-front aberration is an additional
phase function exp [iy(u)] where

x()=(m/A)(C;/2)A%u’ = A *u’], (1)

where u is the scattering wave vector, A is the electron
wavelength, f is the defocus and C, is the lens
spherical aberration.

For high-energy electrons, scattering angles are
small and the scattering wave vector is assumed to
lie in a plane parallel with the specimen surface. It
is then more convenient to write the wave-front
aberration function in terms of the scattering angle

x(8)=(m/M[(C,/2)6* - f67]. (2)

Crystals scatter in directions given by the Bragg angles
8, for the various crystal planes. The image amplitude
is then given by

A(r) =§ w(6,) exp [ix(6,)] exp (2mirf,/2) (3)

where ¢(6,) are the complex scattering amplitudes
for diffraction from the crystal (Spence, 1980). For
single-atom scattering (Chiu & Glaeser, 1975) or scat-
tering by amorphous objects or defects the summation
should be replaced by an integration.

A(r) =] w(0) exp [ix(8)] exp 2mir.8/A) d°0. (4)

In the simplest case we can assume that the scattering
is given by the weak-phase-object approximation

¢(0)=if.(0) (5)
where f.(8) is the electron scattering factor. The
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